天天报道:双拼为什么很少人用(使用智能双拼有什么作用)
双拼接收机主要优点是什么?
双频天线省空间,但是因为要分频器等东西会增加设计难度,同时增加的器件也会引起电流的损失,导致减少发射功率以及减少接收灵敏度。好处是两根天线变一根了,省钱。单品天线就不存在以上的问题,天线只工作在自己设定的频段。既不降低发射功率,也不影响接受灵敏度。一般的单频天线实际效果要远高于双频天线!无线路由为了美观大都采用多根天线来设计,两根天线太丑了,几乎没啥美感,除了2*2MIMO的11N类和1*1的产品外,其他产品都尽量采用多天线才好。单天线就是棉丝袜,两天线设计就是白色长厚丝袜,几乎没啥美感可言!而四根天线就如黑丝一般充满着各种诱惑和幻想!所以路由器天线对人的诱惑就如同钱和女人对男人的诱惑一样,越多越好!
如何在导航电子地图终端上实时显示 gnss 定位位置
GNSS系统--GNSS是Global Navigation Satellite System的缩写。很长时间以来,它有两个译名:全球卫星导航系统和全球导航卫星系统系统优势逗伽利略地系统是世界上第一个基于民用的全球卫星导航定位系统,在2008年投入运行后,全球的用户将使用多制式的接收机,获得更多的导航定位卫星的信号,将无形中极大地提高导航定位的精度,这是逗伽利略地计划给用户带来的直接好处。另外,由于全球将出现多套全球导航定位系统,从市场的发展来看,将会出现GPS系统与逗伽利略地系统竞争的局面,竞争会使用户得到更稳定的信号、更优质的服务。世界上多套全球导航定位系统并存,相互之间的制约和互补将是各国大力发展全球导航定位产业的根本保证。逗伽利略地计划是欧洲自主、独立的全球多模式卫星定位导航系统,提供高精度,高可靠性的定位服务,实现完全非军方控制、管理,可以进行覆盖全球的导航和定位功能。逗伽利略地系统还能够和美国的GPS、俄罗斯的GLONASS系统实现多系统内的相互合作,任何用户将来都可以用一个多系统接收机采集各个系统的数据或者各系统数据的组合来实现定位导航的要求。逗伽利略地系统可以发送实时的高精度定位信息,这是现有的卫星导航系统所没有的,同时逗伽利略地系统能够保证在许多特殊情况下提供服务,如果失败也能在几秒钟内通知客户。与美国的GPS相比,逗伽利略地系统更先进,也更可靠。美国GPS向别国提供的卫星信号,只能发现地面大约10米长的物体,而逗伽利略地的卫星则能发现1米长的目标。一位军事专家形象地比喻说,GPS系统,只能找到街道,而逗伽利略地则可找到家门。
(资料图)
全球四大卫星定位系统分别是那四个 ?
截至2020年12月,全球四大定位系统为:美国GPS、欧盟伽利略、俄罗斯格洛纳斯、中国北斗。
1.美国GPS
由美国国防部于20世纪70年代初开始设计、研制,于1993年全部建成。1994年,美国宣布在10年内向全世界免费提供GPS使用权,但美国只向外国提供低精度的卫星信号。据说该系统有美国设置的“后门”,一旦发生战争,美国可以关闭对某地区的信息服务。
2.欧盟伽利略
欧盟于1999年首次公布伽利略卫星导航系统计划,其目的是摆脱欧洲对美国全球定位系统的依赖,打破其垄断,组成“伽利略”卫星定位系统。该项目总共将发射30颗卫星,位置精度达几米,亦可与美国的GPS系统兼容。
3.俄罗斯格洛纳斯
“GLonASS ”是由俄罗斯单独研发部署的卫星导航系统,该项目启动于上世纪70年代俄罗斯有22颗Glonass卫星在轨运行,但仅有16颗运转正常。该系统需要有18颗卫星才可满足继续为全俄罗斯提供导航服务的需求,至少需要24颗卫星才提供全球导航服务。
4.中国北斗
2003年5月25日零时34分,中国在西昌卫星发射中心用“长征三号甲”运载火箭,成功地将第三颗“北斗一号”导航定位卫星送入太空,前两颗“北斗一号”卫星分别于2000年10月31日和12月21日发射升空,运行导航定位系统工作稳定,状态良好。
扩展资料:
卫星定位系统的应用:
1.精密工程、测量及变形监测中的应用
将应用GPS卫星定位技术建立的控制网叫GPS网,GPS网分为两大类,一类是全球或全国性的高精度GPS网;一类是区域性的GPS网。
大地测量的科研任务是研究地球形状及其随时间的变化,利用全球覆盖的高精度GPS网建立起高精度的动态坐标框架。区域GPS网是指国家C、D、E级GPS网或专为工程项目布测的工程GPS网。
2.交通系统中的应用
对当前位置的定位以及对目标物的定位是地面车辆导航系统的两个关键技术。前者需要GPS获取点位根据,而后者则偏重以数字地图为基础,确定点位置,这实际上是一个地图相关分析的问题。
3.地球动力学中的应用
用GPS来监测全球和区域板块运动,监测区域地壳运动,对地球成因及动力机制的研究。研究地下断层活动模式、应力场变化,对地震危险值估计和预报。
为了进行地壳形变监测,由地震局、总参测绘局、国家测绘局、中国科学院承担的“九五”重大科学工程项目“中同地壳运动监测网络工程”已于2000年建成。
4.军事中的应用
军事上可用于协同作战、导弹的制导、搜索及救援人员野外定位。协同作战方面,GPS可为各级指挥系统提供各种目标及事件所发生的时间和地点。搜索及救援人员野外定位方面,在茫茫的沙漠上,没有任何标志,主要靠导航卫星进行定位,才能知道自己在什么地方。
参考资料来源:百度百科-全球卫星定位系统
参考资料来源:百度百科-全球定位系统 (高精度无线电导航的定位系统)
上海司南导航怎么样啊?
上海司南导航还不错。
上海司南卫星导航技术股份有限公司成立于2012年(股票代码:833972),2017年进入新三板创新层。
是国内自主掌握高精度北斗/GNSS模块核心技术并成功实现规模化市场应用的高新技术企业,集研发、生产、销售、服务为一体,致力于为全球用户提供全方位、多领域的高精度北斗/GNSS芯片、板卡、终端和系统解决方案。
公司打破国外多项技术壁垒,突破高精度GNSS核心算法、芯片、板卡、终端、应用及产业化等关键技术瓶颈,经业内权威专家鉴定司南高精度GNSS技术达到国际先进水平,相关产品入选国家卫星导航专项北斗基础产品推荐名录。
在自主技术和产品支撑下,公司多次承研北斗重大专项、参与国家和上海市卫星导航类科研项目,数次填补国内外高精度GNSS领域的空白。
北斗卫星导航系统和全球定位系统的简称分别是?
全球定位系统的总称是GNSS,对应的GNSS模块是指接收机类型涵盖GPS、北斗、GALILEO、GLONASS多个卫星定位系统的定位导航模块。
中国北斗卫星导航系统的简称是BDS,美国的全球卫星导航系统的简称是GPS,俄罗斯的全球卫星导航系统的简称是GLONASS,由欧盟研制和建立的全球卫星导航定位系统的简称是GALILEO。
GNSS模块通过运算与每个卫星的伪距离,采用距离交会法得出接收机的经度、纬度、高度和时间修正量这四个参数。并通过串行通信口不断输出NMEA格式的定位信息及辅助信息,供接收者选择应用。
SKYLAB的GNSS模块根据支持卫星信号的频段,分为单频GPS定位模块、单频北斗定位模块和单频北斗多模定位模块、双频北斗多模定位模块;根据定位精度的不同分为标准高精度GNSS定位模块和RTK高精度GNSS定位模块;根据使用方式的不同分为嵌入式内置型GNSS定位模块和外置型天线一体化GNSS G-mouse成品;根据模块性能的不同分为标准高精度GNSS定位模块,RTK高精度GNSS定位模块,弱信号GNSS+INS惯性组合导航模块和GNSS授时模块等。
标准高精度定位导航:从移动互联到物联网,位置是一个基础的不可或缺的信息,汽车行驶在路上,需要实时判断自己的位置,并利用内置的标准高精度GNSS定位模块获取的位置信息,配合电子地图来实现导航,它能方便且准确地告诉驾驶者去往目的地的最短或者最快路径。SKYLAB研发推出的标准高精度定位模块(单频GPS,单频BDS,单频北斗多模、双频北斗多模、天线一体化模块、G-mouse),可以为车载和便携式手持等定位终端产品的制造提供了高灵敏度、高精度、低成本的定位、导航等解决方案,能满足专业定位的严格要求与个人消费需要。
RTK高精度定位导航:随着新基建热潮的到来,借助5G+新基建的东风,无人驾驶,自动驾驶等技术正在逐步完善,对智能驾驶汽车来说,车道很窄,和路边的障碍物之间的距离也较短。这意味着,汽车对定位精度的要求是10到30厘米。SKYLAB研发推出的RTK高精度定位模块,内置RTK算法,同时支持BDS、GPS双卫星定位系统,配合全国北斗增强网的高精度定位服务,可以达到实时厘米级定位精度,满足智能驾驶汽车的高精度定位需求。
弱信号惯性组合导航:汽车行驶在路上,视野可能会受到周边的树木、同行的卡车、城市楼群的遮挡,卫星导航系统容易受到周围环境的影响,例如树木楼房等,造成多路径效应,使得定位结果精度降低甚至丢失,尤其是在隧道或者室内环境中,卫星导航系统基本无法使用。SKYLAB弱信号惯性组合导航模块提供实时高精度的车辆定位、测速和测姿信息,在GNSS系统的信号精度降低甚至丢失卫星信号时,不借助里程计信息,利用纯惯性导航技术,也可在较长时间内单独对汽车载体进行高精度定位、测速和测姿,解决弱信号环境下车辆定位漂移或无法接收卫星信号的问题。
米级L1+L5双频GNSS定位模块:单频定位模块的定位精度为2-3米,不能够满足1米左右的车载导航定位精度需求。L1+L5双频定位模块SKG122S/SKG122Y是SKYLAB新推出的工业级标准、高性能双频定位导航模块,能同时跟踪卫星数达40颗,支持多系统联合定位和单系统独立定位,两款模块均支持天线检测,其强抗干扰性,抗多径效应的特性使定位更快,精度更高,产品性能更可靠。其中SKG122S支持GPS(L1+L5)+BDS(B1I+B2A)+GLONASS(L1)+QZSS(L1+L5)+GALILEO(E1+E5)频段,支持北斗三号卫星定位;支持A-GPS,同时跟踪卫星数量高达40颗,且支持单北斗三代(上电默认进入北斗三代,不搜索北斗二代卫星,有效缩短搜星时长),具有强抗干扰性和抗多径效应,双频多模的模块特性使SKG122S定位更快,精度更高,产品性能更可靠。双频定位模块的跟踪灵敏度为-162dBm,捕获灵敏度为-148dBm,1Hz~5Hz的数据更新频率,供电电压为3.3V,达到-40℃~85℃的工业级温度范围,默认波特率115200bps,最高可设置为460800bps。
Gps卫星只有24颗,为什么能服务全球几十亿设备?
应邀回答本行业问题。
GPS卫星不仅仅是24颗,实际上是32颗。24颗GPS卫星是整个GPS系统所需要的最少的数量。
24颗GPS卫星可以保障在地球上任何一点都可以看到4颗GPS卫星,通过四个方程式可以解析出来GPS终端所处的三位空间坐标以及时间这四个变量参数,从而完成定位。
不过,实际上GPS系统也不仅仅是24颗卫星,而是32颗卫星。这些多出来的卫星可以提高定位的准确性,以及可靠性。
GPS的卫星数量足以满足全球的终端使用,关键的地方就是GPS工作原理是广播模式。GPS终端的定位模式都是采用的无源定位,这种定位模式,终端并不需要发送信号,只是接收卫星发送的广播信号。
所以,GPS的卫星数量可以满足全球的GPS终端使用,而无需考虑容量的问题。
这个和广播电台不需要考虑收音机的数量,是一个道理。
在目前全球的四大全球定位系统,包括美国的GPS、俄罗斯的格洛纳斯、欧洲的伽利略都是采用的是无源定位。
中国的北斗卫星导航系统,除了可以提供无源定位之外,还可以提供有源定位、双向授时、短报文功能,北斗系统之中有专门的五颗地球同步轨道卫星就是做这个应用的,而这部分系统资源是有容量的限制的。
总而言之,美国GPS卫星系统目前有32颗卫星而不是24颗卫星,美国GPS系统由于工作原理是广播,所以不需要考虑容量的问题,所以也就可以给全球的几十亿台终端提供服务了。
GPS卫星只有24颗吗?并不是的,GPS一共有32颗,24颗卫星是GPS系统要提供全球定位服务的最小卫星数量。而多出来的那几颗是为了作为备份和提供更高的精度时使用的。不过通常情况下,我们只有这24颗可以使用,毕竟民用的精度只有10米,军用才需要0.1米的精度。
为什么只需要24颗卫星就可以服务全球的所有设备了呢?这是因为民用的GPS模块并没有和卫星通讯的功能,只是单纯的接收GPS的广播而已。这个广播就好像我们使用的大喇叭一样,播放出了声音以后,是一个人听还是一万个人听,其实对于这个大喇叭来说都是一样的。
同样,GPS卫星会定时向地球发出广播信号,自然是有一个设备接收广播还是一亿个设备接收广播,对于GPS卫星来说,都是一样。
而广播的信号中就包含了一个伪随机码,一个时间和一个位置信息。
伪随机码是用来同步的,卫星和GPS接收模块通过同样的算法,计算出一样的伪随机码后,就达到了同步。由于卫星和模块之间通信会存在时间差,而这个时间差其实是相对的,GPS模块需要根据这个时间差和多个卫星的位置,来计算出准确的GPS坐标点。而同步其实就是一个相对时间差效验的过程,不然计算出来的点位就是不准确的。
其实,不光光是GPS是这种广播原理,我们的广播电视卫星也是一样的我国为了实现广播电视的全覆盖,就曾经发射了一颗鑫诺2号广播电视卫星。而让卫星电视信号上星的是广播电视总局来监管。电视节目内容上星以后,通过一颗卫星就可以向整个亚洲进行广播。
因为对于发射的卫星来说,有多少个接收端其实关系不大,反正我都是广播信号的。也因此就出现了很多非法接收卫星信号的解码器。只需要把天线对准卫星的方向就可以了。
首先明确的是:截至到2020年4月,美国已经发射了74颗GPS(全球定位导航系统)卫星,其中31颗正在运行,9颗处于后备状态,2颗正在测试中,30颗已经退休,2颗丢失。整个系统至少需要24颗可运行的卫星,并且官方目标数量是33。
全球定位导航系统为什么能服务全球几十亿设备? 这就是GPS系统设计的高明之处——卫星只是单向的发射信号,接收机采用无源方式只接收信号,这个类似于现在的广播系统,不需要考虑容量。
GPS是什么?——可以提供全球定位导航服务的系统全球定位导航系统(也称为NAVSTAR GPS),是一种基于卫星的无线电导航系统。美国政府创建并维护了该系统,任何使用GPS接收器的人都可以免费访问,它是全球导航卫星系统(GNSS)之一,它向地球上或附近的任何地方的GPS接收器提供地理位置和时间信号。为用户提供3维定位,导航和计时功能。GPS系统主要包括:
1)空间部分:GPS卫星;
2)控制部分:监测站和控制系统;
3)用户部分:GPS设备。
GPS不需要用户发送任何数据,并且它独立于任何电话或互联网,2000年时,GPS定位的精度约为5米。精度增强的最新阶段使用L5频段,现已完全部署。2018年发布的使用L5频段的GPS接收器可以具有更高的精度,精确到30厘米或11.8英寸以内。
除了定位和导航之外,GPS还可以用于追踪,例如为动物添加标签以查看其领土范围。该技术还有助于进行遥感、测控,例如帮助更好地定义一个国家的轮廓等。
GPS为谁服务?——美国运营的系统,可以为全球军事、民用和商业用户提供定位功能GPS项目由美国国防部于1973年启动,1978年发射了第一颗原型航天器,拥有24颗卫星的完整系统,最初限于美国军方使用,1980年开始GPS为全球的军事、民用和商业用户提供定位功能。随着GPS的发展GPS已经发展到Block IIIA系列,该系列预计将发射10颗卫星,最后一颗定于2023年第二季度。“洛克希德·马丁公司的GPS III卫星的精度将提高三倍,而抗干扰能力将提高八倍,航天器的寿命将延长至15年,比今天最新的在轨GPS卫星长25%。GPSIII的新型L1C民用信号也将使其成为首个广播与其他国际全球导航卫星系统(如伽利略)兼容信号的GPS卫星,改善了平民用户的连接性。”
这24颗GPS卫星每12小时绕地球一周,从每个卫星发送一个同步信号。由于卫星沿不同方向移动,因此地面上的用户在略微不同的时间接收信号,当至少有四颗卫星与接收器接触时,接收器可以计算出用户所在的位置。
但是,GPS是由美国政府运营的,它可以有选择地,拒绝向某些区域发射定位信号,从而限制对系统的访问(如1999年卡吉尔战争期间印度军队所经历的那样),或随时降低服务质量。
GPS的工作原理——基于时间和卫星的已知位置GPS卫星均匀分布在总共六个轨道上。卫星和轨道的空间分布确保了在几乎任何时候都可以从地球上几乎任何地方同时看到至少八颗卫星。GPS卫星以大约20,000公里的高度环绕地球。GPS基于时间和卫星的已知位置。卫星携带非常稳定的原子钟,原子钟与地面钟同步。每天在地面上保持的任何时间偏差都会得到纠正。同样,卫星位置也非常精确。每颗GPS卫星持续发射包含当前时间和有关其位置的数据的无线电信号。可以使用称为GPS接收器的特殊接收器接收此信息,该接收器可以检测和解码该信息。
由于无线电波的速度是恒定的,并且与卫星速度无关,因此卫星发送信号与接收器接收信号之间的时间延迟与卫星到接收器的距离成正比。GPS接收器根据接受到的多颗卫星数据,可以确定接收器的精确位置及其与真实时间的偏差。但是接收器必须至少有四颗卫星才能计算出四个未知量
GPS如何实现定位——操作基于“三边测量”数学原理全球定位系统的工作/操作基于“三边测量”数学原理。GPS接收器从每个GPS卫星获取信号。卫星发送信号的确切时间,通过从接收到的时间中减去发送信号的时间,GPS可以知道信号与每个卫星的距离。当卫星发送信号时,GPS接收器还知道卫星在天空中的确切位置。因此,考虑到来自三颗卫星的GPS信号的传播时间及其在天空中的确切位置,GPS接收器可以从三个维度(东,北和海拔)确定接收器的位置。为了计算GPS信号到达的时间,GPS接收器需要非常准确地知道时间,GPS卫星具有原子钟,可以保持非常精确的时间,但是为GPS接收器配备原子钟是不可行的。但是,如果GPS接收器使用来自第四颗卫星的信号,则它可以求解方程式,从而确定原子钟的准确时间,而无需使用原子钟。
根据到卫星的距离测量值确定位置。这四个卫星用于确定接收器在地球上的位置。并且使用三颗卫星来跟踪位置。第四颗卫星用于确认这些航天器中每一个的目标位置。GPS接收器从卫星获取信息,并使用三角测量法确定用户的确切位置。如果GPS接收器只能从3颗卫星获得信号,仍然可以获取位置,但准确性会降低。
第一颗卫星将定位在球体上的某个位置。第二颗卫星将位置缩小到由两个卫星球体的交点创建的圆。第三颗卫星将选择减少到两个可能的点。最后,第四颗卫星有助于计算时间和位置校正,并选择其余两个点之一作为接收器的位置。
GPS系统为什么支持这么多设备GPS卫星不是双向通讯器。GPS卫星所做的只是根据其机载原子钟发送时间和位置。GPS接收器通过收听多个GPS卫接收传输,并执行计算以确定其位置。每个卫星都位于不同的位置,因此接收器将在略有不同的时间获得相同的原子时钟信号。通过比较信号之间的差异,接收器可以确定其位置。
GPS卫星仅在全球范围内传输,就像无线电传输一样,可以接收多少设备没有限制。无论是一个GPS接收器正在监听还是十亿个GPS接收器正在监听,对卫星都没有影响——卫星只是在不断广播时间。GPS的通信模式与一组广播电台可以一次为数百万个设备(称为广播电台)提供服务的方式相同。
就像一个调频广播电台。它只是广播。可能有一千个听众,可能有两千万。在FM电台的范围内,许多听众可以随意收听。FM电台没关系!
其他国家的全球定位导航系统?因为全球定位导航系统在军事和民用中起到的巨大作用,并且由于GPS系统受美国主导,受美国政府控制,虽然在2000年,比尔·克林顿总统批准关闭这种“选择性服务”,但是一些国家已经开发或正在建立其他全球或区域卫星导航系统。
俄罗斯的全球导航卫星系统(GLONASS)是与GPS同步发展的,但是直到2000年代中期,它的全球覆盖范围仍然不完整;
我国的北斗导航卫星系统于2018年开始全球服务,计划于2020年全面部署;
此外,还有欧盟伽利略定位系统,有14颗卫星在轨;
印度的NavIC系统,有7颗在轨卫星;
日本的准天顶卫星系统(QZSS)是一个基于GNSS卫星的增强系统,旨在提高GNSS在亚洲大洋洲的精度,卫星导航独立于GPS计划于2023年进行。
写在最后全球定位系统是一种卫星导航系统,可在所有气候条件下为用户提供位置和时间信息。GPS也用于飞机、轮船、 汽车 的导航。该系统为全球的军事和民用用户提供了关键的功能,在民用、军事和商业上有着广泛的应用。
但是GPS也有缺点:
我国也认识到了卫星导航的重要性,开发出了北斗系统,就在昨天5月13日,北斗卫星导航系统第45颗卫星近日正式入网工作,接替北斗卫星导航系统第3颗卫星。距离北斗三号系统建成,仅一步之遥。
以上是我的浅薄之见,欢迎指正,谢谢!
回答第二个问题。GPS卫星只有发射功能,不需要考虑接收。做个比喻,就像电台,多少个收音机来收听节目都行。
因为他的工作模式是广播,就像学校的大喇叭,只要你站在学校,一个人和10万人听都是一样的,只要在大喇叭的范围内多少人听都可以。
GPS是广播信号,是单向的又不需要回馈信号!你广播电台电视台有收音机和电视机接收台数限制吗?
由于GPS卫星提供的定位服务主要是单边的,所以基本不存在因为用户数量改变而导致运算压力。简单说只要卫星数量达到全球覆盖之后,基础用户只需要接收GPS卫星发射的信号就可以了,而需要上下行数据交换的流量非常有限,不是普通用户能够得到授权的,所以即便基础用户再多也不会对服务造成压力。
GPS是被动定位系统,接收机需要同时接收到四颗星的信号,根据接收机接收的信号算出与这四颗星的距离,在每一时刻每颗GPS星的轨道已知,位置已知,就能算出接收机的位置。而北斗卫星由于只有两颗同时工作,需先发申请信号,地面站运算,算好后再传给申请者,是主动定位系统,因此不能同时应付太多定位申请。全球定位系统(GPS)是本世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统 。其主要目的是为陆、海、空三大领域提供实时、 全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星 星座 己布设完成。
全球定位系统由三部分构成:(1)地面控制部分,由主控站(负责管理、协调整个地面控制系统的 工作)、地面天线(在主控站的控制下,向卫星注入寻电文)、监测站(数据自动收集中心)和通讯辅助系统(数据传输)组成;(2)空间部分,由24颗卫星组成,分布在6个道平面上;(3)用户装置部分, 主要由GPS接收机和卫星天线组成。
全球定位系统的主要特点: (1)全天候;(2) 全球覆盖;(3)三维定速定时高精度;(4)快速省时高效率:(5)应用广泛多功能。
全球定位系统的主要用途:(1)陆地应用,主要包括车辆导航、应急反应、大气物理观测、地球物理资源勘探、工程测量、变形监测、地壳运动监测、 市政规划控制等;(2)海洋应用,包括远洋船最佳航程航线测定、船只实时调度与导航、海洋救援、海洋探宝、水文地质测量以及海洋平台定位、海平面升降监测等;(3)航空航天应用,包括飞机导航、航空遥 感姿态控制、低轨卫星定轨、导弹制导、航空救援和载人航天器防护探测等。
GPS卫星接收机种类很多,根据型号分为测地型、全站型、定时型、手持型、集成型;根据用途分为车载式、船载式、机载式、星载式、弹载式。
经过20余年的实践证明,GPS系统是一个高精度、全天候和全球性的无线电导航、定位和定时的多功能系统。 GPS技术已经发展成为多领域、多模式、多用途、多机型的国际性高新技术产业。
GPS原理24颗GPS卫星在离地面1万2千公里的高空上,以12小时的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。
由于卫星的位置精确可知,在GPS观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。
事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的 星座 分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。
由于卫星运行轨道、卫星时钟存在误差,大气对流层、电离层对信号的影响,以及人为的SA保护政策,使得民用GPS的定位精度只有100米。为提高定位精度,普遍采用差分GPS(DGPS)技术,建立基准站(差分台)进行GPS观测,利用已知的基准站精确坐标,与观测值进行比较,从而得出一修正数,并对外发布。接收机收到该修正数后,与自身的观测值进行比较,消去大部分误差,得到一个比较准确的位置。实验表明,利用差分GPS,定位精度可提高到5米。
GPS前景由于GPS技术所具有的全天候、高精度和自动测量的特点,作为先进的测量手段和新的生产力,已经融入了国民经济建设、国防建设和 社会 发展的各个应用领域。
随着冷战结束和全球经济的蓬勃发展,美国政府宣布2000年至2006期间,在保证美国国家安全不受威胁的前提下,取消SA政策,GPS民用信号精度在全球范围内得到改善,利用C/A码进行单点定位的精度由100米提高到20米,这将进一步推动GPS技术的应用,提高生产力、作业效率、科学水平以及人们的生活质量,刺激GPS市场的增长。据有关专家预测,在美国,单单是 汽车 GPS导航系统,2000年后的市场将达到30亿美元,而在我国, 汽车 导航的市场也将达到50亿元人民币。可见,GPS技术市场的应用前景非常可观。
因为GPS是广播卫星,也就是只发不收,所以没有上下行限制。我打个比方你看无线电台只有一个吧,但听无线电台的收音机可有无数个,无线电台却毫无问题。
GPS的工作原理就是不断的广播现在的时间,接受设备收到这些不同的卫星发送的这些带有时间戳的信号之后会进行比对,因为芯片之中存储了这些卫星在不同时间中坐在宇宙中的位置,然后通过时间差计算出自己与卫星之间的距离,通过多个卫星的发来的数据进行对比计算之后,这些距离的交汇点就是你的位置了。
所以GPS定位准不准全靠上面的原子钟准不准,中国的北斗之所以比美国GPS准就是因为原子钟比他们准。
GPS卫星只向地面用户机发送卫星信号,包括星历和测距码,用户机接收到信号后,解算出卫星的坐标和用户机到卫星的距离,再根据三球交汇原理可以解算出用户机坐标。因此所有的计算是在用户机上进行的,GPS卫星只负责向地面发送信号,理论上GPS的服务容量是无限的,至于为什么要24颗星,是为了保证地面上的用户机在任何时候都能接收到4颗卫星信号。
GPS这种定位原理是被动定位,相对还有种主动定位的,我国的北斗一代双星定位就是主动定位,所有的定位解算是在主控站进行,再将定位结果通过卫星发送到用户机,因此这种定位方式容量就是有限的,同时也就能支持几千个用户同时定位请求。
北斗二代和三代的定位原理就和GPS是一样的了。
GNSS+IMU+MM车载组合导航系统
GNSS+IMU+MM车载组合导航系统 前言:近年来,随着定位业务的迅速发展,用户对于车载端定位精度提出了越来越高的要求,由原来的导航级逐渐更替到车道级。特别是在城市峡谷环境下(高楼、高架),用户无法接收到GNSS信号或GNSS信号受干扰,导致GNSS无定位结果或定位精度差。这是“有源定位”固有的缺点,无法从算法上来克服。针对这个问题,以GNSS+IMU等多传感器融合方案越来越受到重视,因为“无源定位”的IMU恰好可以弥补卫星定位的短板。 基础原理 导航卫星系统(GNSS) 全球导航卫星系统(Global Navigation Satellite System)是一种依靠卫星卫星的伪距载波、星历、时间以及钟差等信息进行实时定位的空基无线电导航系统,能在地球表面或近地空间的任何地点为用户提供全天候的三维坐标和速度以及时间信息。GNSS系统的优点是精度高、误差稳定不发散,但容易受到周围环境影响,比如树木楼房遮挡,镜面等高反射物体引起的多路径效应。 惯性导航系统(IMU) 惯性导航系统(Inertial Navigation System)是一种不依赖于外部信息、也不向外部辐射能量(如无线电导航那样)的自主式导航系统,主要使用惯性测量单元IMU(Inertial measurementunit)。其工作环境不仅包括空中、地面,还可以在水下。惯性导航的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。其优点是工作不需要通时,安装位置随意,定位范围全场景,但定位精度不高,且误差随时间发散。与GNSS导航系统互补。 地图匹配技术(MM) 地图匹配技术MM(Map matching)是结合用户位置信息和地图数据,推算用户在地图上道路的准确位置,辅助车载导航的精准控制。 航位推算法(DR) 航位推算法DR(Dead Reckoning)是一种跟踪导航算法,在获取载体当前时刻坐标位置的前提下,依靠惯性测量单元IMU取得的同周期内载体移动的距离和方位,进而推算下一时刻位置。在此文介绍中,主要讲建立在已有 GNSS系统 解算下,IMU辅助进行组合导航的算法。 车载定位的痛点 车载导航定位发展已经很久,但随着精度要求越来越高,车载定位的一些问题也逐渐浮现: 偏航重算:是指在高架或城市峡谷,信号遮挡引起位置点漂移; 无法定位:是指在无信号区域(停车场、隧道)推算的精度低,导致出口误差大; 抓路错误:是指主辅路、高架上下抓路错误。 其中偏航重算和无法定位主要是GNSS定位原理决定,GNSS定位精度受观测环境影响,难以改善;对于抓路错误,直接原因是正确道路与误抓道路相隔太近,受定位精度限制无法区分;根本原因是只使用位置信息进行抓路,没有发挥其它数据的价值。技术方案 以上介绍的关键技术中,在场景覆盖以及精度上,各有所长,互相补充。根据主流这三种定位技术进行融合,提出GNSS+IMU+MM方案,依靠算法(DR)+数据(POS/HEAD)提高定位的可靠性。 从上述车载定位的几大问题,可以逐步拆分解决:数据融合:这一部分主要是计算 GNSS模块 输出的位置、速度、时间和航向信息,将其数据传递至数据处理终端进行实时数据融合计算,判定当前GNSS数据质量的好坏,根据其数据质量组合不同的定位判断策略。 器件补偿:在GNSS信号质量不好或无法定位的时候,只能依靠IMU的DR算法进行补偿。补偿模块的主要功能是利用GNSS数据来补偿速度敏感器误差参数(比例因子)和IMU的误差参数(陀螺仪天向比例因子和陀螺仪三轴零偏)。补偿的目的是在无GPS信号或弱GPS信号的场景,仅靠DR算法也能得到较为可靠的导航信息(通常短时间也能保证厘米级定位)。 场景识别:依靠内置场景化地图数据源以及实时外部传感器收集的环境信息进行场景判断,确定此刻载体地图位置,辅助系统对于周围环境感知进行行为判断。一般采用高精度街景地图源、激光雷达和毫米波雷达进行环境感知。以 K8模块 为例,采用自适应组合导航设计,支持RTCM2.X/3.X差分数据格式接入,在空旷环境可实现厘米级的定位精度;内置一体化惯导模块,可以实现在复杂环境下的高精度导航。 依靠于自主研发的高精度定位算法,根据车载载体当前运行环境,系统自适应对当前卫星质量进行评估,依据卫星质量进行组合导航。 当卫星条件良好时,以卫星导航为主,结合 高精度RTK 算法,实时定位精度≤±2.5cm,测速精度优于0.03m/s;当卫导无法正常工作时,以惯性导航为主导,3S内精度保持厘米级,10S内精度保持米级。
扩展阅读
总而言之,除了保证接收机能很好地完成自己的工作外,接收机并没有太多的手段来对抗ECM。今天,现代相控阵多通道雷达将采用全数字、软件控制的接收机,就像在数字阵列雷达中一样。这里我们所期望的性能优点是更宽的线性动态范围,以及能支持几十个通道自适应的接收机带内校准:这在对付方向性的噪声干扰中尤其具有优势。
以上是中间户的一些共性,但是有一种“不边不中”的户型,能够兼容边户与中间户的优点,这一般会出现在双拼的塔楼户型中,位于本单元的边户,但与隔壁单元紧贴。还是以上海仁恒河滨城为例:
关键词: